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A binary copolymer chain is treated theoretically in the approximation of a first order Markov process. 
The microstructure of the chain is described in terms of the mole fraction of the dilute monomer and an 
intermonomer correlation coefficient. The resulting equation for the sequence distribution shows some 
symmetry in both parameters. It thus offers the possibility to separate influences of copolymer composition 
on one hand and the distribution of the monomer run lengths along the chain on the other hand. The 
connection of this formalism to n.m.r, dyad analysis and the classical copolymerization parameters is shown. 

(Keywords: copolymerization theory; Markov chain; microstructure; sequence statistics) 

I N T R O D U C T I O N  

The classical theory of copolymer microstructure is 
described in a number of books 1-3. It was developed 
from the process of chemical synthesis and ends in a 
description of copolymer microstructure. This paper 
proceeds in the reverse direction and first describes the 
copolymer by its composition and order. Order, i.e. the 
arrangement of monomers along the polymer chain, is 
discussed in terms of a correlation coefficient, ~c. The 
deduction ends in an equation for the sequence length 
distribution, which shows a way to separate the effects 
of composition and order on the properties of the 
copolymer. Following this deduction the correlation 
coefficient x is connected to the classical theory by 
expressing it in terms of the copolymerization parameters. 

The probability considerations of the deduction use 
the sum of the monomers in the polymer (degree of 
polymerization) as the basic entity. This leads to a 
straightforward construction principle for deduced 
probabilities. The corresponding steps can easily be 
translated into a computer simulation program. 
Additionally, if the mean degree of polymerization is 
given, this formalism allows simple computation of the 
frequencies of isolated sequences in the average chain. 

N O M E N C L A T U R E  AND PREMISES 

Let us consider a binary copolymer from two kinds of 
monomers, A and B. Effects of chain ends shall be 
neglected, but an intermonomer correlation shall be 
allowed, resulting in some kind of order along the chain. 
The letter A shall be used as a variable which can take 
one of the two values A or B. 

Let (A) designate the number of monomers of the kind 
A from the ensemble of monomers in the polymer chain. 
Then the whole ensemble contains (A) + (B) members. 
0032-3861/92/132792~04 
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Because of the possible interdependence between both 
kinds of monomers it appears reasonable to carry out 
deductions with respect to this ensemble. 

Let (AA) be defined as the number of sequences in the 
ensemble consisting of double A with both neighbours 
of the sequences being indeterminate (a dyad). The dyads 
(BB), (AB) and (BA) shall be written in analogy. 
Trivially for the ensemble the following equation holds : 

(A) + (B) = (AA) + (AB) + (BA) + (BB) (1) 

The number of sequences in the ensemble consisting 
of n monomers A, which are delimited by its comonomer 
B at both ends, shall be written in brackets as [A"]. 
These sequences shall be named isolated sequences. 

The letter p shall denote a probability; the function 
SA(r/) stands for the special probability of finding an 
isolated sequence [A"]. Written in lower case letters, 
these quantities refer to the ensemble (A) + (B). 

SA(n), in capital letters, shall be defined as the 
probability of finding one of the sequences [A"] with 
respect to all the sequences in the ensemble. Thus Sg(n ) 
is the common sequence distribution of the monomer A. 

Let us consider the case in which the probability of 
monomer addition to the growing chain is merely 
controlled by the nature of its actual terminate monomer. 
This is the so-called first order Markov chain. 

SEQUENCE DISTRIBUTIONS 

Two groups of quantities, namely composition (amount 
of the monomers) and order (monomer placement) 
describe the copolymer. For  the considered simple model 
the mole fraction q~A of monomer A in the copolymer 
shall be chosen to describe the composition, while a 
correlation coefficient ~c serves to describe the order. With 



the above nomenclature, ~0 A is given by: 

( A )  
f P A - -  

(A) + (B) 

and 
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(2) 

q0 n = 1 -- (PA 

The simplest model for copolymerization is that of a 
random or Bernoulli process. For  a given random chain 
the probability of adding any kind of monomer  to the 
growing chain end has been independent from its 
predecessor. Thus the probabili ty for the addition of a 
monomer  A has been PA = qgk" The more complex model 
of a first order Markov  chain can be described by four 
probabilities which are bound by two constraints 4'5. 

Let us now introduce the correlation coefficient x and 
write down the resulting probabilities. PA+ (X) shall be 
defined as the probability that at the growing polymer 
chain, actually ending in monomer  A, a monomer  of the 
same kind is added. PA_ (X) shall denote the probability 
for the other possible case, namely the addition of the 
comonomer  B to the growing chain end. 

Let us define x in the way customary for correlation 
coefficients and demand that x = 0 defines the Bernoulli 
chain without in termonomer correlations. Furthermore 
let x = 1 describe perfect correlation. This means that 
positive values of x describe a copolymer with a blocky 
tendency, while negative values of K will result in a chain 
with alternating tendency. 

Assuming PA+ (/¢) to be a linear function of K one 
writes : 

PA+ (X) = q~A + X(1 -- tpA ) (3a) 

~ e [  tPA , 1 ]  (3b) 
l - (~A 

PA- (X) = 1 -- PA+ (X) (3C) 

This definition of PA+ is the simplest notation which 
assures that for x = 0 and x = 1 one obtains the necessary 
behaviour for a random chain (PA+ = tpA) and a block 
copolymer (PA+ = 1), respectively. Beyond this, it 
appears natural to choose a formulation in which 
the statistical quantities (i.e. the probabilities for 
agglomeration or segregation) are linear functions of the 
controlling correlation coefficient. Finally, any definition 
has to be consistent in itself. For  the present approach,  
self-consistency means that the number of (AB) dyads 
has to be equal to the number  of (BA) dyads (after a 
transition into B, a transition back to A has to follow). 
The verification that the chosen definition implies this 
condition will be shown in the following (equation (9b)). 

Without loss of generality (~A may be chosen as the 
smaller mole fraction of the two, guaranteeing that ~c will 
not be less than - 1 .  Restriction (3b) is necessary to 
obtain probabilities in the allowed range [0, 1]. As will 
be clear from the following treatment, the physical 
meaning of (3b) is that the average length of the isolated 
sequences of the dilute monomer  fraction cannot be less 
than l. 

Let us now construct the probability SA(n ) in order to 
obtain the sequence distribution. The construction 
proceeds in four steps: 

1. find any comonomer  B in the chain 

S A ( r / )  = (1  - -  q~A) • • • 

2. at which a monomer  A is coupled 

SA(n ) = (1 -- q~A)PB-(~:) ' ' '  

3. with (n -- 1 ) trailing monomers  A 

SA(n) = (1 - -  ~ A ) P B -  ( ~ ) [ P A ,  ( ~ ) 3  " - 1  " ' "  

4. and a terminator B 

SA(n) = (1 -- q~A)PB (/¢)[PA+ (/~)]n-lPA- (/¢) 

With equation (3) one obtains: 

SA(n) ---- q~k(1 -- q~A)2(1 -- ~C) 2 
X [1 -- (1 -- ¢pA)(1 -- K ) ] , - I  

and, with the shorthand notation: 

1 1 
( S A ) ,  -- (4) 

1 - - q ~ A  1 - - K  

we have 

sA(n) = eA ( (5 )  

It can be verified that equation (4) introduces not only 
a shorthand notation, but also has the physical meaning 
of the number  average sequence length. Only an outline 
of the verification shall be given here. Since the number 
average sequence length is the first momentum of Sk(n), 
it can be computed using the mathematical  definition of 
the first momentum of S A ( n  ) 

s, ,n,] 
One only has to insert equation (5) and use a well known 
mathematical  technique t. Equation (5) describes the 
amount  of isolated sequences of length n with respect to 
the ensemble of polymerized monomers  (A) + (B). For  

= 0 we obtain the known mean sequence length of a 
Bernoulli chain : 

( S A 5  n : 1 / ( 1  - -  ~0A) 

The sequence length distribution SA(n ) with respect 
to the number of isolated sequences can now be easily 
obtained from SA(n ). From the definition of both 
distributions, it follows that:  

SA(n) = SA(n sA(n) 
n 1 

is valid. Carrying out this computat ion yields: 

( 1 "1 
1 1 ( 6 )  

S~(n) -  ( sA) .  ( S A ) . /  

Or, in a more intuitive approach:  let M = (A) + (B) be 
the number  of monomers  in the chain, then for any fixed 
n, MSA (n) = [ A"] gives the number  of isolated sequences 
of run length n. The basic entity for SA(n), on the other 
hand, is the total number  of isolated sequences : 

[ A " ]  = Mq)A/(SA) n 
n = l  

Thus, with respect to ( S A ) ,  : 

[A "] = (MqOA/(SA),)SA(n) 

Combinat ion of both formulations for [A"] leads to 
equation (6). 

(SA)  . is the first momentum of the sequence 
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distribution. For  completeness the next two higher 
momenta of SA(n), the weight average (SA) w and the 
'z-average' (SA) z shall be given here, although there is 
no difference to the known equations for a random chain, 
if these equations are expressed recursively in terms of 
(SA)n: 

(SA)w ---- 2 ( S A ) .  -- 1 (7) 

6 ( S A ) .  4 -  6 ( S A ) . - -  1 
(SA)z  = (8) 

<sA). 
These equations can also be deduced using the general 
definitions of the momenta, equation (5) and the well 
known mathematical technique of Koenig 1. 

-o- 

-> 

0 

0.~ 

-0.~ 

DYAD PROBABILITIES 

The method usually applied for analysis of the sequence 
distributions in a copolymer is 13C n.m.r. This method 
gives access to the frequencies of dyads and other 
parameters. 

With equation (3) and the evident simple construction 
principle we find: 

PAA = (~APA÷ = ~ i  -~- (PA( 1 - -  (PA) K (9a) 

for the probability of finding an (AA) dyad in the chain. 
The corresponding probability PaB follows after exchanging 
the letter A by the letter B in equation (9a). For the 
mixed dyads we obtain: 

PAB ~--" (PAPA - = ~A ( 1 - q~A) ( 1 -- X) 

PBA = ~0aP~- = q~A( 1 -- ~0A)(1 -- X) (9b) 

The identity PAn = PaA, resulting without additional 
assumption, is the necessary steady-state condition 6 for 
the first order Markov chain. 

If one knows at least the probability of the mixed dyads 
and one of the probabilities of the plain dyads, it is 
possible to compute the correlation parameter x and thus 
the complete sequence distribution, if the copolymer 
follows a first order Markov process. 

For  application in our working group we refer to the 
work of McFarlane 7. For  this method the dyad 
frequencies PAA and 2pAn have to be determined. 
McFarlane defines a primary correlation factor a: 

PAA - (10) 
PAA -}- 2pAn 

With this a he defines his final correlation factor ~P by: 

5 - -  5 0 ~ - -  5 0 

W - a l _ 5 0 -  1 - - ~ °  (11) 

Here the superscripts denote the limiting cases for a 
random copolymer (a °) and a totally blocky one (a I ). 
While the copolymer varies from random to blocky, qJ, 
as well as the correlation coefficient x, runs from 0 to 
1. 51 is l, because in this case PAB = 0. With equation 
(9) and the definitions of McFarlane we find for the 
dependence of these correlation parameters: 

IkI-/ 

and vice versa: 

1 -t- (1 - ~pA)(1 -- ~ )  
(12) 

~Oa+ 1 
x - (13) 

~B + 1/q~ 

-I .C 

- 0 . 5  

0 

1.0 

Figure 1 Order parameter, W (r, ~0 A), from dyad analysis (according 
to McFarlane v) of a copolymer generated by a first order Markov 
process. W is a function of the intermonomer correlation r and the 
mole fraction ~0 A. Copolymers with negative x and W tend towards 
alternation of the monomers. Positive x or W denotes blocky character 
of the copolymer 

For positive values o fq  ~ one can obtain the correlation 
parameter x with almost the same precision as the 
precision of the measured qJ. If, on the other hand, q~ is 
negative, one should be careful in the determination of 
x from W. Let us consider the case where the determined 
value of qJ is negative, and the mole fraction of the 
monomer corresponding to the measured plain dyad is 
smaller than 0.4. In this case we do not only have a small 
n.m.r, signal, but also x(~ ' )  is a slowly varying function. 
A determination of x with sufficient precision should be 
rather difficult. 

Thus W is a good experimental basis for the 
computation of x, if the copolymer is ranging from 
random to blocky. In the case of an alternating tendency, 
we have to demand q~A > 0.4. If this is not the case, 
measurement of the (BB) dyad frequency is needed. The 
function W(x, ~0A) is plotted in Figure 1. 

RELATIONS TO TH E CLASSICAL APPROACH 

The classical approach to copolymerization theory 1'2 is 
deduced from the chemical process and finally describes 
the copolymer in terms of mole fraction and chain 
statistics. According to the classical approach the first 
order Markov chain is described by two parameters: 
f = ~OA/~% is the molar ratio in the copolymer and rArn 
is the product of the copolymerization parameters 
(reactivity ratios), f is a common composition 
parameter, while rArB determines the order within the 
copolymer from the point of view of the synthesizing 
chemist. Let us now deduce the relation between the 
correlation coefficient x and the product of reactivity 
ratios. The following deduction is based on the equations 
given by Tosi 8, who has used the equations of Fineman 
a n d  R o s s  9 for numerical calculations of sequence 
distributions. 
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For the probability PA+ (Px 1 in the notation of Tosi a) 
the following equation is valid: 

rAF 
PA+ -- (14) 

rAF + 1 

Equation (3a) links x to equation (14). The product rAF 
in the above equation is given by: 

rAF= ~[ f -  1 + x / ( f  -- 1) 2 + 4rpf] (15) 

where rp = rarR is defined for ease of writing. A 
combination of equations (3a), (14) and (15) results in : 

K=X// I+4tPA(1 --tpA)(r p -  1 ) -  1 
(16) 

x/1 + 4q~k(1 -- ~0g)(rp -- l)  + 1 

and vice versa: 

/£ 

rp = 1 + q~A( 1 _ ~0A)(1 _ K) 2 (17) 

The function rp(~0A, K ), given in equation (17), 
describes the relation between synthesis and the resulting 
structure under the assumption of a first order Markov 
process. Only for positive values of rp is it of physical 
sense. For negative values of rp the average sequence 
length of the dilute monomer drops below 1. If we are 
synthesizing a copolymer using a first order Markov 
process with a well defined structure, we should fix rp 
during synthesis and, furthermore, should be able to 
reproduce it. In practice, these demands can only be 
fulfilled approximately. An impression of the influence 
of small variations of rp on the resulting structure can 
be gained by partial derivation of equation (17) with 
respect to K, yielding: 

(1 - K )  3 
OK = q~A(1 --  ¢PA) - -  8rp (18) 

I + K  

From this equation the influence of a variation of rp on 
the order parameter x can be determined, if we assume 
that q~A can be controlled perfectly. 

CONCLUSIONS 

The approach presented in this paper offers the possibility 
to determine a well defined correlation coefficient x from 

dyad analysis of a given copolymer, if the composition 
of the copolymer is known, x is a measure of the order 
in the copolymer. Data analysis based on this approach 
can be carried out to describe the arrangement of the 
monomers along the chain by a number, which is closely 
connected to the process of monomer addition in a first 
order Markov process. 

In this paper the sequence distribution for the first 
order Markov chain has been expressed in terms of the 
parameters ~0 A and x, resolving an interesting symmetry. 
Since the sequence distribution is a function of only the 
product (1 - q9 A)(1 - x), the shape of the function 
remains the same, if only this product remains constant. 
Thus it may be possible to separate the influence of 
composition (~0A) and order (distribution SA(n , q)A, K)) 
on the properties of the copolymer material. To achieve 
this, one would have to study series of copolymers, where 
the product ( 1 - ~0 A) ( 1 - ~c) varies from series to series. 

Since the sequence distribution has been deduced in 
analytical form, it is possible to develop it into the series 
of its momenta. If one concerns a copolymer where 
monomer A is deuterated, the second momentum of the 
sequence distribution, (S  A)w (see equation (7)) can be 
measured directly by neutron scattering 1°. Thus if we 
have measured (S  A ) w, we can compute K using equations 
(7), (4) and ~0A. So the neutron scattering experiment 
can give quantitative information on the arrangement of 
monomers along the copolymer chain. If x has been 
determined independently by n.m.r, measurement and 
dyad analysis, even the assumption of a first order 
Markov process can be tested. 
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